RNA aptamers directed to discrete functional sites on a single protein structural domain.

نویسندگان

  • Hua Shi
  • Xiaochun Fan
  • Aarti Sevilimedu
  • John T Lis
چکیده

Cellular regulatory networks are organized such that many proteins have few interactions, whereas a few proteins have many. These densely connected protein "hubs" are critical for the system-wide behavior of cells, and the capability of selectively perturbing a subset of interactions at these hubs is invaluable in deciphering and manipulating regulatory mechanisms. SELEX-generated RNA aptamers are proving to be highly effective reagents for inhibiting targeted proteins, but conventional methods generate one or several aptamer clones that usually bind to a single target site most preferred by a nucleic acid ligand. We advance a generalized scheme for isolating aptamers to multiple sites on a target molecule by reducing the ability of the preferred site to select its cognate aptamer. We demonstrate the use of this scheme by generating aptamers directed to discrete functional surfaces of the yeast TATA-binding protein (TBP). Previously we selected "class 1" RNA aptamers that interfere with the TBP's binding to TATA-DNA. By masking TBP with TATA-DNA or an unamplifiable class 1 aptamer, we isolated a new aptamer class, "class 2," that can bind a TBP.DNA complex and is in competition with binding another general transcription factor, TFIIA. Moreover, we show that both of these aptamers inhibit RNA polymerase II-dependent transcription, but analysis of template-bound factors shows they do so in mechanistically distinct and unexpected ways that can be attributed to binding either the DNA or TFIIA recognition sites. These results should spur innovative approaches to modulating other highly connected regulatory proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and molecular basis for hyperspecificity of RNA aptamer to human immunoglobulin G.

Potential applications for functional RNAs are rapidly expanding, not only to address functions based on primary nucleotide sequences, but also by RNA aptamer, which can suppress the activity of any target molecule. Aptamers are short DNA or RNA folded molecules that can be selected in vitro on the basis of their high affinity for a target molecule. Here, we demonstrate the ability of RNA aptam...

متن کامل

Anti-HCV RNA Aptamers Targeting the Genomic cis-Acting Replication Element

Hepatitis C virus (HCV) replication is dependent on the existence of several highly conserved functional genomic RNA domains. The cis-acting replication element (CRE), located within the 3' end of the NS5B coding region of the HCV genome, has been shown essential for efficient viral replication. Its sequence and structural features determine its involvement in functional interactions with viral...

متن کامل

Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and...

متن کامل

RNA nanotechnology breakthrough for targeted release of RNA-based drugs using cell-based aptamers

Nucleic acids play different roles besides storing information and proteins coding. For example, single-stranded nucleic acids can fold into complicated structures with capability of molecular detection, catalyzing bioreactions and therapy. The development of RNA-based therapies has been rapidly progressed in the recent years. RNA aptamers are biomolecules with a size of 10 to 50 nm that can be...

متن کامل

Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain.

Human noroviruses (NoV) are the leading cause of acute viral gastroenteritis worldwide. Significant antigenic diversity of NoV strains has limited the availability of broadly reactive ligands for design of detection assays. The purpose of this work was to produce and characterize single stranded (ss)DNA aptamers with binding specificity to human NoV using an easily produced NoV target-the P dom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 10  شماره 

صفحات  -

تاریخ انتشار 2007